

name:

date:

## INDEX LAWS

## AIM & OBJECTIVES:

To be able to simplify expressions using the laws of indices.

## **OBJECTIVE:**

I can apply the laws of indices to simple multiplication problems such as  $n^7 x n^3$ 

I can apply the laws of indices to simple division problems such as  $n^7 \div n^3$ 

I can apply the laws of indices to powers of powers such as  $(n^7)^3$ 

I can apply the laws of indices to more complex multiplication problems such as  $2n^7 x 4n^3$ 

I can apply the laws of indices to more complex division problems such as  $8n^7 \div 4n^3$ 

I can apply the laws of indices to more complex powers problems such as  $(2n^7)^3$ 

I can apply the laws of indices to simple fractional problems

I can apply the laws of indices to more complex fractional problems



index notation, power, exponent, coefficient, integer, multiply, divide, brackets, fraction

## WHILE YOU WAIT... 🕒

 State the value of n in each question

 1.  $2 \times 2 \times 2 \times 2 = 2^n$  n=\_\_\_\_

 2.  $5 \times 5 \times 5 \times 5 \times 5 = 5^n$  n=\_\_\_\_

 3.  $a \times a \times a = a^n$  n=\_\_\_\_

 4.  $y \times y \times y \times y \times y = y^n$  n=\_\_\_\_

 7.  $1 = 8^n$  n=\_\_\_\_

 8.  $y \times y \times y \times y = y^n$  n=\_\_\_\_

 7.  $1 = y^n$  n=\_\_\_\_\_

 8.  $2 \times 2 \times 2 \times 2 = 2^n$  n=\_\_\_\_\_

 9.  $2 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 = 5^n$  n=\_\_\_\_\_

 9.  $3 \times 4 \times 4 = a^n$  n=\_\_\_\_\_

 9.  $3 \times 4 \times 4 = a^n$  n=\_\_\_\_\_

 9.  $3 \times 4 \times 4 = a^n$  n=\_\_\_\_\_

 9.  $3 \times 4 \times 4 = a^n$  n=\_\_\_\_\_

 9.  $3 \times 4 \times 4 = a^n$  n=\_\_\_\_\_

 9.  $3 \times 4 \times 4 = a^n$  n=\_\_\_\_\_

 1.  $2 \times 2 \times 2 \times 2 \times 2 = (2n)^n$  n=\_\_\_\_\_

 2.  $3ab \times 3ab \times 3ab \times 3ab = (3ab)^n$  n=\_\_\_\_

Pick out Nice facts









